PHASE EQUILIBRIA IN THE SYSTEM $La_2O_3-Na_2O-P_2O_5$: BINARY PHASE DIAGRAM $La(PO_3)_3-NaPO_3$

J. Kropiwnicka

DEPARTMENT OF INORGANIC CHEMISTRY, ACADEMY OF ECONOMICS, WROCŁAW, POLAND

(Received December 20, 1987)

In the ternary system La₂O₃-Na₂O-P₂O₅, the binary system La(PO₃)₃-NaPO₃ was examined by means of thermal (heating and cooling), dilatometric, X-ray powder diffraction and microscopic analyses. The occurrence of the phosphate NaLaP₄O₁₂ was confirmed and its temperature of congruent melting was determined to be 1174 °C. The powder data indicate a monoclinic system with the lattice constants a=12.36(6); b=13.45(0); c=6.57(4) Å; $y=109.48^{\circ}$; V=1030.97 Å³. The investigations were carried out on monocrystals.

The binary system $La(PO_3)_3$ -NaPO₃ in the ternary system La_2O_3 -Na₂O-P₂O₅ is known in the literature [1, 2]. Its phase diagram was established via thermal analysis. There is one compound in the system with the formula $NaLa(PO_3)_4$, which forms incongruently at 870° . The eutectic point occurs at 5 mol % LaP₃O₉ at 620° [1]. Palkina reports on NaLa(PO₃)₄ as a laser material [3]. According to Tananaew [4], sodium lanthanium polyphosphate also occurs in a hydrated form, as NaLaP₄O₁₂ \cdot 6H₂O. Its dehydration is a two-stage one and occurs at 140° and 350°. AgLa(PO₃)₄, which crystallizes in the monoclinic system P2₁/c, a = 12.38; b = 12.88; c = 7.33 Å; $\beta = 127.9^{\circ}$, shows isotypism with NaLa(PO₃)₄. AgLa(PO₃)₄ occurs in one polymorphic modification [5]. The following group of compounds has also been examined: NaNd(PO₃)₄ · 7H₂O; NaEu(PO₃)₄ · 12H₂O. These salts form incongruently and undergo multistage dehydration. As a rule, polyphosphates from aqueous solution are obtained by heating metal oxides or their salts with concentrated phosphoric acid [4]. The monocrystal NaNdP₄O₁₂ is obtained by the Kyropulos method. Its structure is similar to those of other tetraphosphates, with chains along the sortest directions of the elementary cell. It is a laser material [6]. $NaLa(PO_3)_4$ is said to be isomorphic with $NaNd(PO_3)_4$ [1]. Other polyphosphates, which melt at similar temperatures (KEuP₄O₁₂, KNdP₄O₁₂, RbEuP₄O₁₂, $KLaP_4O_{12}$ and $LiNdP_4O_{12}$), are also known in the literature [6–9, 21]. Data on the fusion temperatures of metaphosphates $Ln(PO_3)_3$ are restricted to [10-12].

> John Wiley & Sons, Limited, Chichester Akadémiai Kiadó, Budapest

Ln(PO₃)₃ occur in two subgroups; according to [14, 15], they crystallize in the orthorhombic system from La to Eu, and in the monoclinic system from Gd to La, including yttrium. The structures of NdP₃O₉ [15], YbP₃O₉ [16] and La(PO₃)₃ [17–19] were determined by X-ray structural analysis. NdP₃O₉, belonging in the first subgroup, crystallizes in the space group C222₁, a=11.172; b=8.533; c=7.284 Å. The second subgroup P2₁/c, a=11.219; b=19.983; c=7.284 Å. The second subgroup P2₁/c, a=11.219; b=19.983; c=7.284 Å. The second subgroup includes YbP₃O₉, which crystallizes in the space group P2₁/c, a=11.219; b=19.983; c=9.999 Å; $\beta=97.30^{\circ}$ [16]. La(PO₃)₃ is isomorphic with NdP₃O₉ and its full structure has been established [17]. It crystallizes in the space group C222 with the elementary cell parameters a=11.303; b=8.648; c=7.397 Å [18].

According to Balagina [14], the lanthanide metaphosphates $Ln(PO_3)_3$, Ln = Sm, Eu, Ho, Er, Tm, Yb and Lu exhibit various polymorphic forms. For La and Pr, such forms have not been observed.

Experimental

Samples in the system $La(PO_3)_3 - NaPO_3$ were prepared from ready reagents or from reagents synthesized in the laboratory. The following parent substances were used: sodium carbonate Na_2CO_3 (p.a.), lanthanium oxide La_2O_3 (99.9%), ammonium dihydrophosphate $NH_4H_2PO_4$ (p.a.), sodium dihydrophosphate $NaH_2PO_4 \cdot H_2O$.

Anhydrous lanthanum metaphosphate was obtained by sintering a mixture of La_2O_3 and $NH_4H_2PO_4$ at 400° for 5 h [19].

Monocrystals of La(PO₃)₃ were prepared by mixing 0.97 g of H₃PO₄ 95%, 2.03 g of P₄O₁₀ (Merck), 0.04 g of NaF (99.9%, p.a.) and 0.5 g of La₂O₃ (99.9%, USSR); the mixture was heated to 500° at a rate of 5 deg/h, and was then cooled at a rate of 5 deg/h to room temperature. The monocrystals from the mixture were washed with water.

Methods

Simultaneous TG, DTG and DTA determinations on NaLaP₄O₁₂ and samples in the binary system were carried out with a derivatograph, with dry air as the atmospheric gas, 10° /min heating rate and Al₂O₃ as reference material.

X-ray analysis at room temperature was carried out by the powder method in the Guinier camera. Infrared absorption spectra was made with using Specord IR 75 (University of Wrocław) spectrophotometer using KBr pellets over the range from 400–4000 cm⁻¹.

J. Thermal Anal. 34, 1988

Sodium content was determined by the emission flame photometry method in a Perkin-Elmer 403 atomic absorption spectro-photometer using the acetylene—air flame.

Results and discussion

Figure 1 presents a phase diagram of the system $La(PO_3)_3$ -NaPO₃, which was obtained in our laboratory via thermal (heating and cooling), microscopic and X-ray analyses. Samples for the experiments were prepared from sodium metaphos-

Fig. 1 Phase diagram of the system La(PO₃)₃-NaPO₃

phate NaPO₃ and anhydrous lanthanum metaphosphate La(PO₃)₃ according to the methods described in [19]. They were then mixed thoroughly, triturated and sintered at 400° for 6 h. Samples from this system form glazes, decompose quite easily and are hygroscopic. In order to limit the formation of glazes during thermal experiments, grafting and slow cooling were used. However, effects in curves from thermal analysis'were not always obtained as a result of such a procedure, which is why samples from the system were also examined visually. Visual observation

$d_{exp} \times 10^{-1} \text{ nm}$	$d_{\rm cal} \times 10^{-1} {\rm nm}$	hkl	$d_{exp} \times 10^{-1}$ nm	$d_{cal} \times 10^{-1} \text{ nm}$	hkl	
6.553	6.574	001	2.501	2.509	302	
	6.563	120	2.456	2.462	222	
6.285	6.340	020		2.461	411	
5.834	5.829	200		2.461	240	
	5.836	011	2.424	2.429	132	
5.275	5.251	220	2.386	2.396	332	
4.959	4.925	110	2.377	2.377	430	
4.645	4.645	121	2.299	2.305	241	
4.352	4.361	201	2.253	2.244	41 2	
3.936	3.940	121	2.201	2.197	501	
	3.952	320	—	2.202	451	
3.889	3.886	300	2.176	2.178	322	
3.725	3.717	220		2.180	402	
3.493	3.491	311	2.145	2.145	113	
	3.503	231		2.144	142	
_	3.501	330		2.150	541	
3.298	3.287	002	2.131	2.132	340	
	3.281	240	2.107	2.113	060	
3.222	3.236	221	2.072	2.071	023	
3.064	3.073	4T0		2.072	132	
	3.064	420		2.074	232	
3.028	3.027	311		2.076	361	
3.007	3.006	112		2.070	460	
2.979	2.981	230	2.058	2.059	511	
	2.988	141		2.060	620	
2.932	2.939	122	2.045	2.042	630	
	2.936	241	1.982	1.979	332	
2.913	2.918	022	_	1.984	520	
	2.090	320	1.986	1.986	133	
	2.914	400		1.970	242	
2.836	2.829	140		1.967	160	
2.787	2.786	222		1.966	621	
	2.784	4⊺ 1	1.956	1.960	512	
2.739	2.733	122	1.945	1.945	033	
2.677	2.674	230		1.943	600	
2.677	2.669	130		1.943	532	
2.654	2.660	321	1.936	1.934	313	
_	2.653	410		1.936	233	
2.654	2.650	132	—	1.934	6T1	
—	2.647	431	1.876	1.873	630	
2.556	2.548	330	1.863	1.863	601	
2.529	2.527	322	1.855	1.857	333	
—	2.536	050	1.841	1.843	313	

Table 1 Lattice parameters of low-temperature y-NaLaP₄O₁₂

J. Thermal Anal. 34, 1988

$d_{exp} \times 10^{-1}$ nm	$d_{cal} \times 10^{-1} \text{ nm}$	hkl	$d_{exp} \times 10^{-1} \text{ nm}$	$d_{cal} \times 10^{-1} \text{ nm}$	hkl
_	1.839	271		1.739	261
—	1.839	561	—	1.738	570
1.811	1.810	512	1.712	1.705	170
	1.811	070	1.701	1.698	522
	1.814	171	—	1.701	721
1.803	1.802	043	—	1.702	731
	1.803	530	1.645	1.643	004
—	1.803	260	—	1.646	372
-	1.801	651		1.645	180
1.793	1.789	342	1.579	1.581	204
1.878	1.788	441	1.579	1.581	204
	1.788	351		1.580	532
1.771	1.768	343		1.581	262
_	1.770	532		1.578	543
—	1.769	471	_	1.578	580
1.754	1.751	462	1.523	1.521	063
1.740	1.738	531			

Monoclinic system: a = 12.36(6) Å, b = 13.45(0) Å, c = 6.57(4) Å, $\gamma = 109,48^{\circ}$, V = 1030.97 Å³

involved recording of the temperature at which the first traces of lic id were noticed, and the temperature at which the sample liquefies totally and scomes transparent. On the basis of the experiments, we confirmed that $La(PC_3)_3$ and NaPO₃ form a known compound in the molar ratio 1:1, with formula NaLaP₄O₁₂, which melts congruently at 1174° [19]. The experiments were carried out with monocrystals of NaLaP₄O₁₂. This compound can be obtained by two methods: 1) from anhydrous sodium metaphosphate NaPO₃ and lanthanum metaphosphate La(PO₃)₃ by the sintering of these compounds in stoichiometric amounts at 600° for 10 h; 2) from the ready substances mentioned in the experimental, crystalline NaLaP₄O₁₂ was obtained [20]. The purity of the compound was checked by means of X-ray and IR spectroscopy. Figure 2 depicts monocrystals of NaLaP₄O₁₂ obtained by the methods described in [20].

Figure 3 shows a microphotograph of a sample of $NaLaP_4O_{12}$. Originally educed, large, white crystals of $NaLaP_4O_{12}$, with sharp edges can be seen against the background of glass (grey area).

Investigations of NaLaP₄O₁₂ in the solid phase showed that it occurs in three polymorphic transformations, with the following transformation temperatures: 840°, 750° and 350°. A high-temperature transformation occurs above 840°. The transitions were examined by means of thermal (heating and cooling) and dilatometric analyses. The differential curve DTA shows three minima, at 840°, 750° and 350°. The TG curve also shows three bends downwards, which confirms

Fig. 2 The monocrystals of $NaLaP_4O_{12}$ (polarized light, magnification 140 ×, size 0.05 mm)

Fig. 3 Microphotography of the sample of a compound composition $NaLaP_4O_{12}$

that the above transformations proceed with volume decrease. The total contraction of the sample is 3%. With $La(PO_3)_3$, $NaLaP_4O_{12}$ the eutectic composition e14: 18.5 wt.% NaPO₃ and 81.5 wt.% La(PO₃)₃ at 820°. A peritectic reaction proceeds in this system in the composition range from 0 to 15 wt.% NaPO₃. The NaLaP₄O₁₂-NaPO₃ system has a eutectic character as well. Eutectic e15 occurs at 82.5 wt.% NaPO₃ and 17.5 wt.% La(PO₃)₃ at 500°.

The La(PO₃)₃ NaLaP₄O₁₂ system does not have all the characteristics of a

binary system, because of the peritectic formation of lanthanum metaphosphate. Liquid C, together with lanthanum orthophosphate, yields crystals of $La(PO_3)_3$.

The transformation α - to β -NaLaP₄O₁₂ (840–750°) is manifested as a strong thermal effect in the heating curves in the entire composition range. In the La(PO₃)₃-NaLaP₄O₁₂ system, it gives a common effect with the eutectic. The β - to γ -NaLaP₄O₁₂ transformation at 350° gives a common effect with the β - to γ -NaPO₃ transformation in the entire composition range.

The effect of the α - to β -NaPO₃ transformation at 475–500° covers the thermal effect from eutectic e15 effect. The thermal effect of the α - to β -La(PO₃)₃ transformation at 820° covers the eutectic e14 effect. According to Ben Hassen et al. [1], NaLa(PO₃)₄ is formed incongruently at 870° . In an analysis of the La(PO₃)₃ system, these authors used the hydrated lanthanum metaphosphate LaP₃O₉ \cdot 3H₂O obtained from aqueous solution by the Serra [22] method. Lanthanum polyphosphates (mainly LaP_5O_{14}) as a result of heating to 500° [20]. It can be concluded that the authors of [1] carried out experiments with a complex multiphase system, which resulted in the disagreement between their results and those obtained in our laboratory [19]. According to Fedorowa [2], NaLa(PO₃)₄ gives a eutectic with NaPO₃ at 580°. X-ray powder data on NaLaP₄O₁₂ indicate an orthorhombic system with the following lattice constants: a = 10.10; b = 13.20; c = 7.216 Å. The experiments on the monocrystals of NaLaP4O12 carried out in our laboratory show that the powder X-ray data differ markedly from those in the literature [1, 2]. Table 1 gives the lattice parameters of the low-temperature variety of γ -NaLaP₄O₁₂. The powder data point to a monoclinic system with the lattice constants: a = 12.36(6), b = 13.45(0), c = 6.57(4) Å; $\gamma = 109.48^{\circ}; V = 1030.97$ Å³.

Powder data were obtained through use of the "Powder" program, version IBM 360/05 (1974) [23].

During our experiments we discovered that lanthanum metaphosphate undergoes a so far unknown transformation at 820°. This proceeds with great difficulty in pure La(PO₃)₃. The addition of sodium lanthanum phosphates Na₄La₂P₄O₁₅, Na₈La₂P₈O₂₇ or NaLaP₄O₁₂ in amounts of from 2.0 to 2.5 wt.% accelerates the transformation and increases the thermal effect which accompanies it [18].

* * *

The author thank Dr. T. Znamierowska and Dr. J. Matuszewski for helpful discussions and G. Orczykowska for translation of the text. This work was supported by grant CPBP-01.18.

References

- Ben Hassen, N. Ariguib, M. Dabbabi and M. Trabelski, C.R. Acad. Sc. Paris, t. 294 (1982) 375.
- 2 E. N. Fedorowa, L. K. Schmatok, I. I. Kozhina and T. R. Barabanowa, Neorg. Mater., 22 (1986).
- 3 K. K. Palkina, N. N. Tschudinova, B. N. Litwin and N. N. Winogradowa, Neorg. Mater., 17 (1981).
- 4 I. V. Tananaev, Pure Appl. Chem., 52 (1980) 1092.
- 5 Ben Hassen et al., Thermochimica Acta, 65 (1983) 35.
- 6 H. Koizumi, Acta Cryst., B32 (1976) 2254.
- 7 H. Koizumi, Acta Cryst., B32 (1976) 266.
- 8 H. Y.-P. Hong, Mat. Res. Bull., 10 (1975) 635.
- 9 T. Yamada et al., J. Appl. Phys., 45(11) (1974) 5096.
- 10 I. A. Bondar, Khim. Red. Elem. Moskwa, Nauka (1983).
- 11 E. Agrawal and F. A. Hummel, J. Elektrochem. Soc., 127 (1980) 1550.
- 12 H. D. Park and E. R. J. Kreidler, Am. Cer. Soc., 67 (1984) 23.

- J. Kropiwnicka and T. Znamierowska, Polish J. Chem. (in press).
- 14 G. M. Balagina et al., Neorg. Mater., 21 (1985) 712.
- 15 H. Y.-P. Hong, Acta Cryst., 30B (1974) 1857.
- 16 H. Y.-P. Hong, Acta Cryst., 30B (1974) 468.
- 17 J. Matuszewski, J. Kropiwnicka and T. Znamierowska, J. Solid State Chem., (in press).
- 18 J. Kropiwnicka, J. Matuszewski and T. Znamierowska, Xth European Crystallographic Meeting Collected Abstracts W-w 5-9 August 1986. 2C-33, 1986, p. 275.
- 19 N. Kropiwnicka, Thesis, Wrocław 1986.
- 20 J. Kropiwnicka and T. Znamierowska, Announcement of the invention nr P 259778, Biuletyn Urzędu Patentowego PRL, 11 (1987) 351.
- 21 Younghua Lin et al. Wuli Xuebao, 32(5) (1983) 675.
- 22 A. Serra and J. Giesbrecht, J. Inorg. Chem., 30 (1968) 793.
- 23 D. Taupin, J. Appl. Cryst., 1 (1968) 178.

Zusammenfassung — Das binäre Teilsystem $La(PO_3)_3$ -NaPO₃ des ternären Systemes La_2O_3 -Na_2O-P₂O₅ wurde mittels thermischer, dilatometrischer, Röntgendiffraktions- und mikroskopischen Methoden untersucht. Es wurde die Existenz des Phosphates NaLaP₄O₁₂ und dessen kongruenter Schmelzpunkt von 1174 °C festgestellt. Die Röntgendiffraktionsaufnahmen lassen auf ein monoklines System mit den Gitterkonstanten a = 12,36(6), b = 13,45(0), c = 6,57(4) Å, $\gamma = 109,48^{\circ}$ und V = 1030,87 Å³ schliessen. Die Untersuchungen wurden an Einkristallen durchgeführt.

Резюме — С помощью термического (нагревание и охлаждение), дилатометрического, рентгенофазового и микроскопического анализов исследована бинарная система La(PO₃)₃-NaPO₃, образующаяся в тройной системе La₂O₃-Na₂O-P₂O₅. Подтверждено образование безводного полифосфата NaLaP₄O₁₂, плавящегося конгруэнтно при 1174°. Данное соединение находится в трех полиморфных модификациях γ -, β - и α -при температурах, соответственно, 350, 750 и 840°. Полифосфат NaLaP₄O₁₂ кристаллизуется в моноклинной сингонии с параметрами решетки a=12,36 Å, b=13,45 Å, c=6,57 Å, $\gamma=109,48^{\circ}$ и V=1030,97 Å³. Бинарная система образует две эвтектики при температурах 500 и 820. Метафосфат лантана La(PO₃)₃ плавится инконгруэнтно при 1050°, а при 820° — претерпевает α -, β -полуморфное превращение. Добавление 2–2,5 весовых % лантанонатриевых фосфатов увеличивает термический эффект такого полиморфного превращения.